«Экономические задачи ЕГЭ по математике: виды и способы решений»

Учитель математики МАОУ СОШ №47 г. Томска

Легостаева Н.А.

Необходимые знания при решении задач

- Сумма п первых членов арифметической прогрессии.
- 2. Решать уравнения, неравенства, находить значение выражения.
- 2. Сумма п первых членов геометрической прогрессии.
- 4. Нахождение производной, исследование функции (для задач на оптимальный выбор).
- 5. Понятие процента, нахождение процента от числа и числа по его проценту.

Типы экономических задач

- 1. Банковские задачи (дифференцированный платеж, аннуитетный платеж, смешанный платеж).
- 2. На ценные бумаги.
- 3. Задачи на оптимальный выбор.

Трудности, с которыми школьник может столкнуться

- 1. Не понимание условия задачи (ученик с вкладами и кредитами в реальной жизни не сталкивался).
- 2. В задачах на ЕГЭ используется упрощённая форма. Долг и проценты или гасятся равномерно, или по заранее известному алгоритму, достаточно просто внимательно прочитать условие.

Вопросы, на которые ученику необходимо ответить при решении задачи

- Как работает процент по кредиту?
- 2. На какую сумму начисляется процент?
- 3. Из каких частей состоит платеж?
- 4. Как уменьшается долг?

Для составления математической модели

Год, месяц	Долг на начало периода	Начисленные проценты за период	Выплата за период
1			
••••			
n			

Важно! При данной схеме кредита заемщик погашает кредит одинаковыми суммами (кроме последнего платежа). При этом долг на начало периода уменьшается неравномерно.

Обозначения:

- \triangleright S сумма кредита
- р процентная ставка
- ightharpoonup п срок кредитования (количество месяцев, лет)
- X выплата.

Год, месяц	Долг на начало периода	Начисленные проценты за период	Выплата за период
1	S	$S \cdot \frac{p}{100}$	X
2	$S + S \cdot \frac{p}{100} - X =$ $= S \cdot \left(1 + \frac{p}{100}\right) - X$	$\left(S \cdot \left(1 + \frac{p}{100}\right) - X\right) \cdot \frac{p}{100} =$ $= S \cdot \left(1 + \frac{p}{100}\right) \cdot \frac{p}{100} - X \cdot \frac{p}{100}$	X

$$(S \cdot \left(1 + \frac{p}{100}\right) - X) + (S \cdot \left(1 + \frac{p}{100}\right) \cdot \frac{p}{100} - X)$$

$$-X \cdot \frac{p}{100} - X = \dots =$$

$$= S \cdot \left(1 + \frac{p}{100}\right)^2 - X \cdot \left(1 + \frac{p}{100}\right) - X$$

$$\left(S \cdot \left(1 + \frac{p}{100}\right)^2 - X\right) \cdot \left(1 + \frac{p}{100}\right) - X\right) \cdot \frac{p}{100}$$

X

4	$\left(S \cdot \left(1 + \frac{p}{100}\right)^2 - X \cdot \left(1 + \frac{p}{100}\right) - X\right) + \\ + \left(S \cdot \left(1 + \frac{p}{100}\right)^2 - X \cdot \left(1 + \frac{p}{100}\right) - X\right) \cdot \frac{p}{100} \\ - X = \cdots = \\ = S \cdot \left(1 + \frac{p}{100}\right)^3 - X \cdot \left(1 + \frac{p}{100}\right)^2 - X \\ \cdot \left(1 + \frac{p}{100}\right) - X$ Долг на начало 4 года или долг на конец 3 года (после выплаты)	••••	X
	•••	•••	•••

n+1

На конец п-го года

$$S \cdot \left(1 + \frac{p}{100}\right)^{n} - X \cdot \left(1 + \frac{p}{100}\right)^{n-1} - \dots - X$$
$$\cdot \left(1 + \frac{p}{100}\right) - X_{1}$$

Если кредит взят на n лет, то после выплаты в n-ом году величина долга на начало n+1-го года равна 0.

$$S \cdot \left(1 + \frac{p}{100}\right)^n - X \cdot \left(1 + \frac{p}{100}\right)^{n-1} - \dots - X \cdot \left(1 + \frac{p}{100}\right) - X_1 = 0$$

 X_1 - последняя выплата (может отличаться от остальных выплат в меньшую сторону).

Если кредит по условию задачи взят на 3 года и более, то таблицу лучше не заполнять, а сразу воспользоваться формулой. При этом, что бы не было вопросов, то предварительно прописать название схемы кредита, общую формулу и данные задачи, а только потом математическую модель для задачи.

1 января 2015 года Андрей Владимирович взял в банке 1,1 млн. рублей в кредит. Схема выплаты кредита, следующая: 1 числа каждого следующего месяца банк начисляет 3% на оставшуюся сумму долга (то есть увеличивает долг на 3%), затем Андрей Владимирович переводит в банк платеж. На какое минимальное количество месяцев Андрей Владимирович может взять кредит, чтобы ежемесячные выплаты были не более 220 тыс. рублей?

Решение:

- ▶ S=1,1 млн. рублей
- ▶ p=3%
- так как количество месяцев должно быть минимальным, значит сумма погашения должна быть наибольшей, но по условию не более 220 тыс. рублей, значит выплата в месяц X=220 тыс. рублей.
- ▶ Найти п.

Месяц	Долг на начало периода	Начисленные проценты за период	Выплата за период
1	1 100 000	$1\ 100\ 000 \cdot \frac{3}{100}$	220 000
2	$1\ 100\ 000 + 1\ 100\ 000 \cdot \frac{3}{100} - 220\ 000 =$ $= 913\ 000$	$913\ 000 \cdot \frac{3}{100}$	220 000
3	$913\ 000 + 913\ 000 \cdot \frac{3}{100} - 220\ 000 =$ $= 720\ 390$	$720\ 390 \cdot \frac{3}{100}$	220 000
4	$720\ 390 + 720\ 390 \cdot \frac{3}{100} - 220\ 000 =$ $= 522\ 001,7$	$522\ 001,7 \cdot \frac{3}{100}$	220 000

Месяц	Долг на начало периода	Начисленные проценты за период	Выплата за период
4	$720\ 390 + 720\ 390 \cdot \frac{3}{100} - 220\ 000 =$ $= 522\ 001,7$	$522\ 001,7 \cdot \frac{3}{100}$	220 000
5	$522\ 001,7 + 522\ 001,7 \cdot \frac{3}{100} - 220\ 000$ $=$ $= 317\ 661,751$	$317\ 661,751 \cdot \frac{3}{100}$	220 000
6	$317 661,75 + 317 661,75 \cdot \frac{3}{100}$ $-220 000 =$ $= 107 191,60353$	$107 191,6053 \cdot \frac{3}{100}$ = = 3 215,7481059	107 191,60353 + 3 215,7481059 = 110 407,3516359

Ответ: 6 месяцев.

Для самостоятельного решения

- 1. Максим хочет взять кредит 1,5 млн рублей. Погашение кредита происходит раз в год равными суммами (кроме, может быть, последней) после начисления процентов. Ставка процента 10% годовых. На какое минимальное количество лет может Максим взять кредит, чтобы ежегодные выплаты были не более 350 тысяч рублей? Ответ: 6 лет.
- 2. 1 января 2015 года Павел Витальевич взял в банке 1 млн. рублей в кредит. Схема выплаты кредита, следующая: 1 числа каждого следующего месяца банк начисляет 1% на оставшуюся сумму долга (то есть увеличивает долг на 1%), затем Павел Витальевич переводит в банк платеж. На какое минимальное количество месяцев Павел Витальевич может взять кредит, чтобы ежемесячные выплаты были не более 125 тыс. рублей? Ответ: 9 месяцев.

31 декабря 2014 года Сергей взял в банке некоторую сумму в кредит под 12% годовых. Схема выплаты кредита, следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 12%), затем Сергей переводит в банк 3512320 рублей. Какую сумму взял Сергей в банке, если он выплатил долг тремя равными платежами (то есть за три года)?

- ▶ p=12%
- X=3 512 320 рублей.
- ▶ Так как долг выплачен тремя равными платежами:
- 1. Последний платеж не отличается от первых двух.
- 2. Срок кредитования 3 года
- ▶ n=3 года
- ▶ Найти S.

Месяц	Долг на начало периода	Начисленные проценты за период	Выплата за период
1	S	$S \cdot \frac{12}{100}$	X
2	$S + S \cdot \frac{12}{100} - X = S \cdot \left(1 + \frac{12}{100}\right) - X$	$(S \cdot \left(1 + \frac{12}{100}\right) - X)$ $\cdot \frac{12}{100}$	X
3	$S \cdot \left(1 + \frac{12}{100}\right) - X + S \cdot \left(1 + \frac{12}{100}\right) \cdot \frac{12}{100} - X$ $\cdot \frac{12}{100} - X =$ $= S \cdot \left(1 + \frac{12}{100}\right)^2 - X \cdot \left(1 + \frac{12}{100}\right) - X$		X

На конец 3 года сумма кредита должна быть равна 0:

$$S \cdot \left(1 + \frac{12}{100}\right)^2 - X \cdot \left(1 + \frac{12}{100}\right) - X + S \cdot \left(1 + \frac{12}{100}\right)^2 \cdot \frac{12}{100} - X \cdot \left(1 + \frac{12}{100}\right) \cdot \frac{12}{100} - X \cdot \frac{12}{100} - X = 0;$$

$$S \cdot \left(1 + \frac{12}{100}\right)^3 - X \cdot \left(1 + \frac{12}{100}\right)^2 - X \cdot \left(1 + \frac{12}{100}\right) - X = 0;$$

$$S \cdot \left(\frac{28}{25}\right)^3 - X \cdot \left(\frac{28}{25}\right)^2 - X \cdot \frac{28}{25} - X = 0;$$

$$S \cdot \left(\frac{28}{25}\right)^3 - X \cdot \left(\left(\frac{28}{25}\right)^2 + \frac{28}{25} + 1\right) = 0;$$

$$S \cdot \left(\frac{28}{25}\right)^3 - 3512320 \cdot \frac{2109}{625} = 0;$$

$$S = 3512320 \cdot \frac{2109}{625} \cdot \frac{25^3}{28^3};$$

$$S = 160 \cdot \frac{2109}{625} \cdot \frac{25^3}{1};$$

$$S = 160 \cdot \frac{2109}{1} \cdot \frac{25}{1};$$

$$S = 4\ 000 \cdot \frac{2109}{1};$$

$$S = 8436000$$
.

Ответ: 8 436 000 рублей.

Для самостоятельного решения

- 1. 31 декабря 2014 года Борис взял в банке 1 млн. рублей в кредит. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на определенное количество процентов), затем Борис переводит очередной транш. Борис выплатил кредит за два транша, переводя в первый раз 560 тыс. рублей, во второй 661,1 тыс. рублей. Под какой процент банк выдал кредит Борису? Ответ: 13%.
- 2. 31 декабря 2014 года Игорь взял в банке некоторую сумму в кредит под 13% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 13%), затем Игорь переводит в банк 5107600 рублей. Какую сумму взял Игорь в банке, если он выплатил долг двумя равными платежами (то есть за два года)? Ответ: 8520000 рублей.